
On the Queue Number Of Planar Graphs
Michael A. Bekos, Martin Gronemann, Chrysanthi N. Raftopoulou

On the Queue Number of Planar Graphs

Michael A. Bekos1 Martin Gronemann2 Chrysanthi N. Raftopoulou3

1. University of Tübingen, Germany
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Problem: Queue number of Planar Graphs

Theorem[1]:
Planar graphs have queue number at most 49.

Improvement:

Planar graphs have queue number at most 42.

Idea:
• Exploit planarity

• Modify existing technique

[1] Dujmović, Joret, Micek, Morin, Ueckerdt, Wood Planar graphs have bounded queue-number (2020)
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Planar graph G subgraph of P � H � K3 where H is a planar 3-tree

Definition: Tripod

t3

t1

t2

t

(qn(H) ≤ 5)qn(G) ≤ 3 · 3 · qn(H) + 4 ≤ 49

• BFS-layering

subgraph of P � K3

• vertex partition in tripods

Tripod decomposition

• outerface bounded by t1, t2, t3
• t attached to t1, t2, t3

• t1, t2, t3 parents of t

• recurse in regions

Graph H
• vertex vt corresponds to tripod t

vt3

vt1

vt2



On the Queue Number Of Planar Graphs
Michael A. Bekos, Martin Gronemann, Chrysanthi N. Raftopoulou

Step 1: compute graph H

Theorem [ Dujmović et al.]:
Planar graph G subgraph of P � H � K3 where H is a planar 3-tree

Definition: Tripod

t3

t1

t2

t

(qn(H) ≤ 5)qn(G) ≤ 3 · 3 · qn(H) + 4 ≤ 49

• BFS-layering

subgraph of P � K3

• vertex partition in tripods

Tripod decomposition

• outerface bounded by t1, t2, t3
• t attached to t1, t2, t3

• t1, t2, t3 parents of t

• recurse in regions

Graph H
• vertex vt corresponds to tripod t
• vt adjacent with vt1 , vt2 , vt3

vt3

vt1

vt2

vt
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Step 2: 5-queue layout of H

Theorem[1]:
A planar 3-tree H has qn(H) ≤ 5

• level-0 graph is triangle

• maximal planar 3-tree

• leveling of vertices

• recurse in faces

level 0 level 1 level 2

• level 1 is outerplanar 2-queue layout of outerplanar

• 3 queues for binding edges

[1] Alam, Bekos, Gronemann, Kaufmann, Pupyrev:
Queue layouts of planar 3-trees (2020)
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[1] Dujmović, Pór, Wood: Track layouts of graphs (2004)



On the Queue Number Of Planar Graphs
Michael A. Bekos, Martin Gronemann, Chrysanthi N. Raftopoulou

Step 2: 2-queue layout of outerplanar

Theorem[1]:
Outerplanar graph G has qn(G) = 2

• maximal outerplanar
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Theorem[1]:
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• maximal outerplanar
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• add degree-2 vertex
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Step 2: 2-queue layout of outerplanar

Theorem[1]:
Outerplanar graph G has qn(G) = 2

• maximal outerplanar

• start with an edge

• add degree-2 vertex

• edges have span 1 or 2

• vertices placed on levels

2-queue layout
• span 1 edges on one queue
• span 2 edges on one queue

• face has a top, middle
and bottom vertex

[1] Dujmović, Pór, Wood: Track layouts of graphs (2004)
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Step 2: 2-queue layout of outerplanar

Theorem[1]:
Outerplanar graph G has qn(G) = 2

1

2 3

4

5

• maximal outerplanar

• start with an edge

• add degree-2 vertex

• edges have span 1 or 2

• vertices placed on levels

2-queue layout
• span 1 edges on one queue
• span 2 edges on one queue
• faces are ordered

• face has a top, middle
and bottom vertex

[1] Dujmović, Pór, Wood: Track layouts of graphs (2004)
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Overview

Theorem [ Dujmović et al.]:

qn(G) ≤ 3 · 3 · qn(H) + 4 ≤ 49

tripodslevel an edge of H
blows up to a K3,3

three types of edges

forward

backward

• 5-queue layout of H determines the order of the tripods

3-rainbow

• BFS-leveling of G is a partial order
• each 3 vertices of the same tripod and

on same BFS-level are unordered
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Improvement

Main Idea:
order the paths of each tripod

t2

t1

t3

t

p3

p1

• level edges on one queue

(level edges of Pk � K3)

p1 p2 p3

Claim
• binding (and vertex) edges

create no 3-rainbow

otherwise planarity is violatedTripods need 3 queues
upper bound reduced to 48
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Improvement

Types of 3-rainbows • for two adjacent tripods one is parent of the other

• if t ′ parent of t , t is not adjacent to a path p′ of t ′NO
• left and right might conflict

→ consider only children

EXCLUDE

EXCLUDE

• avoid one of the two edges

→ consider only following tripods

• children are grouped based on which paths
they don’t see

• following tripods form a series of groups

→ require two groups
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1. Consider only following tripods

Restrictions

2. Split considered nodes into two groups

3. Consider only children

• blue vertices precede and green follow

level 0 level 1 level 2

• exclude queues of the outerplanar subgraph

• other queues satisfy 1.

• green neighbors form two clusters
• do the same for the blue

we can improve on two queues of
the 5-queue layout of H
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Restrictions

1. Consider only following tripods

2. Split considered nodes into two groups

3. Consider only children

• green and blue clusters to be children

• each cluster to form a group,

i.e. to not see a path of the tripod

t3

t1

t2

t

Restrictions

• each cluster to be in a shaded region

• graph H must reflect planarity of G

• graph H must respect parent-child relation

• the level of parent can’t be greater than the child’s
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Improvement

• Contract tripods in G

• preserve embedding

• remove homotopic parallel edges

• Subdivide parallel edges and loops

• Extend by preserving embedding

• All three restrictions are satisfied
• The paths can be ordered with no 3-rainbows
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Summary

Improved bound:

qn(G) ≤ 3 · (3 · 3 + 2 · 2) + 3 = 42

tripodslevel three queues
of H

three types of edges

forward

backward

3-rainbow

two queues
of H

2-rainbow

• Further reduce
• Subfamilies

Thank you
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