On the Queue Number of Planar Graphs GD2021

Michael A. Bekos¹ Martin Gronemann² Chrysanthi N. Raftopoulou³

- 1. University of Tübingen, Germany
- 2. Osnabrück University, Germany
- 3. National Technical University of Athens, Greece

Tübingen, 16/09/2021

Linear Layout

- vertices along the spine
- edges on pages

Linear Layout

- vertices along the spine
- edges on pages

Linear Layout

- vertices along the spine
- edges on pages

Linear Layout

- vertices along the spine
- edges on pages

Linear Layout

- vertices along the spine
- edges on pages

Problem: Queue number of Planar Graphs

Theorem^[1]:

Planar graphs have queue number at most 49.

[1] Dujmović, Joret, Micek, Morin, Ueckerdt, Wood Planar graphs have bounded queue-number (2020)

Problem: Queue number of Planar Graphs

Theorem^[1]:

Planar graphs have queue number at most 49.

Improvement:

Planar graphs have queue number at most 42.

[1] Dujmović, Joret, Micek, Morin, Ueckerdt, Wood Planar graphs have bounded queue-number (2020)

Problem: Queue number of Planar Graphs

Theorem^[1]:

Planar graphs have queue number at most 49.

Improvement:

Planar graphs have queue number at most 42.

Idea:

- Exploit planarity
- Modify existing technique

[1] Dujmović, Joret, Micek, Morin, Ueckerdt, Wood Planar graphs have bounded queue-number (2020)

Planar graphs have bounded queue number.

[1] Heath, Leighton, Rosenberg Comparing queues and stacks asmechanisms for laying out graphs (1992)

Planar graphs have bounded queue number.

[1] Heath, Leighton, Rosenberg *Comparing queues and stacks asmechanisms for laying out graphs* (1992)
[2] Di Battista, Frati, Pach *On the queue number of planar graphs.* (2010)

Planar graphs have bounded queue number.

Heath, Leighton, Rosenberg *Comparing queues and stacks asmechanisms for laying out graphs* (1992)
 Di Battista, Frati, Pach *On the queue number of planar graphs.* (2010)
 Dujmović *Graph layouts via layered separators* (2013)
 Dujmović, Morin, Wood *Layered separators in minor-closed graph classes with applications* (2013)

Planar graphs have bounded queue number.

 Heath, Leighton, Rosenberg *Comparing queues and stacks asmechanisms for laying out graphs* (1992)
 Di Battista, Frati, Pach *On the queue number of planar graphs*. (2010)
 Dujmović *Graph layouts via layered separators* (2013)
 Dujmović, Morin, Wood *Layered separators in minor-closed graph classes with applications* (2013)
 Bekos, Förster, Gronemann, Mchedlidze, Montecchiani, Raftopoulou, Ueckerdt: *Planar graphs of bounded degree have boundedqueue number* (2019)
 Dujmović, Morin, Wood *Queue layouts of graphs with bounded degree and bounded genus* (2019)

Planar graphs have bounded queue number.

 Heath, Leighton, Rosenberg *Comparing queues and stacks asmechanisms for laying out graphs* (1992)
 Di Battista, Frati, Pach *On the queue number of planar graphs.* (2010)
 Dujmović *Graph layouts via layered separators* (2013)
 Dujmović, Morin, Wood *Layered separators in minor-closed graph classes with applications* (2013)
 Bekos, Förster, Gronemann, Mchedlidze, Montecchiani, Raftopoulou, Ueckerdt: *Planar graphs of bounded degree have boundedqueue number* (2019)
 Dujmović, Morin, Wood *Queue layouts of graphs with bounded degree and bounded genus* (2019)
 Dujmović, Joret, Micek, Morin, Ueckerdt, Wood *Planar graphs have bounded queue-number* (2019)

Planar graphs have bounded queue number.

Theorem^[7]:

Planar graphs have queue number at most 49.

[1] Heath, Leighton, Rosenberg Comparing queues and stacks asmechanisms for laying out graphs (1992)

[2] Di Battista, Frati, Pach On the queue number of planar graphs. (2010)

[3] Dujmović Graph layouts via layered separators (2013)

[4] Dujmović, Morin, Wood Layered separators in minor-closed graph classes with applications (2013)

[5] Bekos, Förster, Gronemann, Mchedlidze, Montecchiani, Raftopoulou, Ueckerdt:

Planar graphs of bounded degree have boundedqueue number (2019)

[6] Dujmović, Morin, Wood *Queue layouts of graphs with bounded degree and bounded genus* (2019)[7] Dujmović, Joret, Micek, Morin, Ueckerdt, Wood *Planar graphs have bounded queue-number* (2019)

Definition: $G \boxtimes H$

strong product of G and H

(assume that $G = P_k$)

Definition: $G \boxtimes H$

strong product of *G* and *H* (assume that $G = P_k$)

Definition: $G \boxtimes H$

strong product of *G* and *H* (assume that $G = P_k$)

• vertices of *H* become copies of *G*

Definition: $G \boxtimes H$

- vertices of *H* become copies of *G*
- edges e_G and e_H give rise to a K_4

Definition: $G \boxtimes H$

- vertices of *H* become copies of *G*
- edges e_G and e_H give rise to a K_4

Definition: $G \boxtimes H$

- vertices of *H* become copies of *G*
- edges e_G and e_H give rise to a K_4

Definition: $G \boxtimes H$

- vertices of *H* become copies of *G*
- edges e_G and e_H give rise to a K_4

Definition: $G \boxtimes H$

strong product of G and H(assume that $G = P_k$)

- vertices of *H* become copies of *G*
- edges e_G and e_H give rise to a K_4

 P_k implies a leveling $\{V_1, V_2, \ldots, V_k\}$

Definition: $G \boxtimes H$

strong product of G and H(assume that $G = P_k$)

- vertices of *H* become copies of *G*
- edges e_G and e_H give rise to a K_4
- P_k implies a leveling $\{V_1, V_2, \ldots, V_k\}$

Types of edges

Definition: $G \boxtimes H$

strong product of *G* and *H* (assume that $G = P_k$)

- vertices of *H* become copies of *G*
- edges e_G and e_H give rise to a K_4
- P_k implies a leveling $\{V_1, V_2, \ldots, V_k\}$

Types of edges			
level			

Definition: $G \boxtimes H$

strong product of G and H(assume that $G = P_k$)

- vertices of *H* become copies of *G*
- edges e_G and e_H give rise to a K_4
- P_k implies a leveling $\{V_1, V_2, \ldots, V_k\}$

Types of edges			
	binding		
level			

Definition: $G \boxtimes H$

strong product of G and H(assume that $G = P_k$)

- vertices of *H* become copies of *G*
- edges e_G and e_H give rise to a K_4
- P_k implies a leveling $\{V_1, V_2, \ldots, V_k\}$

Definition: $G \boxtimes H$

strong product of G and H(assume that $G = P_k$)

- vertices of *H* become copies of *G*
- edges e_G and e_H give rise to a K_4
- P_k implies a leveling $\{V_1, V_2, \ldots, V_k\}$

Definition: $G \boxtimes H$

- vertices of *H* become copies of *G*
- edges e_G and e_H give rise to a K_4
- P_k implies a leveling $\{V_1, V_2, \ldots, V_k\}$

Queue number^[1]: $P \boxtimes H$

 $qn(P \boxtimes H) \leq 3 \cdot qn(H) + 1$

[1] Wood, Queue layouts of graph products and powers (2005)

Queue number^[1]: $P \boxtimes H$

 $qn(P \boxtimes H) \leq 3 \cdot qn(H) + 1$

Theorem ^[2]:

qn(G) = k if and only if there is a vertex order with no (k + 1)-rainbow

[1] Wood, *Queue layouts of graph products and powers* (2005)[2] Heath, Rosenberg: *Laying out graphs using queues* (1992)

Queue number^[1]: $P \boxtimes H$

 $qn(P \boxtimes H) \leq 3 \cdot qn(H) + 1$

Theorem ^[2]:

qn(G) = k if and only if there is a vertex order with no (k + 1)-rainbow

• queue layout of *H* with qn(*H*) pages

edges on one queue of H

Ρ

Vi

 V_{i+1} (

[1] Wood, Queue layouts of graph products and powers (2005) [2] Heath, Rosenberg: Laying out graphs using queues (1992)

Queue number^[1]: $P \boxtimes H$

 $qn(P \boxtimes H) \leq 3 \cdot qn(H) + 1$

Theorem ^[2]:

qn(G) = k if and only if there is a vertex order with no (k + 1)-rainbow

• queue layout of *H* with qn(*H*) pages

edges on one queue of H

[1] Wood, *Queue layouts of graph products and powers* (2005)[2] Heath, Rosenberg: *Laying out graphs using queues* (1992)

 $qn(P \boxtimes H) \leq 3 \cdot qn(H) + 1$

Theorem ^[2]:

qn(G) = k if and only if there is a vertex order with no (k + 1)-rainbow

• queue layout of *H* with qn(*H*) pages

edges on one queue of H

[1] Wood, *Queue layouts of graph products and powers* (2005)[2] Heath, Rosenberg: *Laying out graphs using queues* (1992)

 $qn(P \boxtimes H) \leq 3 \cdot qn(H) + 1$

Theorem ^[2]:

qn(G) = k if and only if there is a vertex order with no (k + 1)-rainbow

queue layout of H with qn(H) pages

edges on one queue of H

[1] Wood, *Queue layouts of graph products and powers* (2005)[2] Heath, Rosenberg: *Laying out graphs using queues* (1992)
Strong Product

 $qn(P \boxtimes H) \leq 3 \cdot qn(H) + 1$

Theorem ^[2]:

qn(G) = k if and only if there is a vertex order with no (k + 1)-rainbow

• queue layout of *H* with qn(*H*) pages

edges on one queue of H

[1] Wood, *Queue layouts of graph products and powers* (2005)[2] Heath, Rosenberg: *Laying out graphs using queues* (1992)

Strong Product

Queue number^[1]: $P \boxtimes H$

 $qn(P \boxtimes H) \leq 3 \cdot qn(H) + 1$

Theorem ^[2]:

qn(G) = k if and only if there is a vertex order with no (k + 1)-rainbow

• queue layout of *H* with qn(*H*) pages

edges on one queue of H

[1] Wood, *Queue layouts of graph products and powers* (2005)[2] Heath, Rosenberg: *Laying out graphs using queues* (1992)

Strong Product

Queue number^[1]: $P \boxtimes H$

 $qn(P \boxtimes H) \leq 3 \cdot qn(H) + 1$

Theorem ^[2]:

qn(G) = k if and only if there is a vertex order with no (k + 1)-rainbow

• queue layout of *H* with qn(*H*) pages

edges on one queue of H

[1] Wood, *Queue layouts of graph products and powers* (2005)[2] Heath, Rosenberg: *Laying out graphs using queues* (1992)

Theorem^[1]:

G planar subgraph of $P_k \boxtimes H \boxtimes K_3$

[1] Dujmović, Joret, Micek, Morin, Ueckerdt, Wood *Planar graphs have bounded queue-number* (2020)

Theorem^[1]:

G planar subgraph of $P_k \boxtimes H \boxtimes K_3$

• vertex of *H* becomes $P_k \boxtimes K_3$

[1] Dujmović, Joret, Micek, Morin, Ueckerdt, Wood *Planar graphs have bounded queue-number* (2020)

Theorem [Dujmović et al.]:

Planar graph *G* subgraph of $P \boxtimes H \boxtimes K_3$ where *H* is a planar 3-tree

 $qn(G) \leq 3 \cdot 3 \cdot qn(H) + 4 \leq 49$

 $(qn(H) \leq 5)$

Theorem [Dujmović et al.]:

Planar graph *G* subgraph of $P \boxtimes H \boxtimes K_3$ where *H* is a planar 3-tree

 $qn(G) \leq 3 \cdot 3 \cdot qn(H) + 4 \leq 49$

 $(qn(H) \leq 5)$

BFS-layering

Theorem [Dujmović et al.]:

Planar graph G subgraph of $P \boxtimes H \boxtimes K_3$ where H is a planar 3-tree

 $qn(G) \leq 3 \cdot 3 \cdot qn(H) + 4 \leq 49$

 $(qn(H) \leq 5)$

BFS-layering

subgraph of $P \boxtimes K_3$

Theorem [Dujmović et al.]:

Planar graph G subgraph of $P \boxtimes H \boxtimes K_3$ where H is a planar 3-tree

 $qn(G) \leq 3 \cdot 3 \cdot qn(H) + 4 \leq 49$

 $(qn(H) \leq 5)$

BFS-layering

Tripod decomposition

vertex partition in tripods

Theorem [Dujmović et al.]:

Planar graph G subgraph of $P \boxtimes H \boxtimes K_3$ where H is a planar 3-tree

 $qn(G) \leq 3 \cdot 3 \cdot qn(H) + 4 \leq 49$

 $(qn(H) \leq 5)$

BFS-layering

- vertex partition in tripods
- outerface bounded by t_1 , t_2 , t_3

Theorem [Dujmović et al.]:

Planar graph G subgraph of $P \boxtimes H \boxtimes K_3$ where H is a planar 3-tree

 $qn(G) \leq 3 \cdot 3 \cdot qn(H) + 4 \leq 49$

 $(qn(H) \leq 5)$

BFS-layering

- vertex partition in tripods
- outerface bounded by t_1 , t_2 , t_3
- t attached to t_1 , t_2 , t_3

Theorem [Dujmović et al.]:

Planar graph G subgraph of $P \boxtimes H \boxtimes K_3$ where H is a planar 3-tree

 $qn(G) \leq 3 \cdot 3 \cdot qn(H) + 4 \leq 49$

 $(qn(H) \leq 5)$

BFS-layering

- vertex partition in tripods
- outerface bounded by t_1 , t_2 , t_3
- t attached to t_1 , t_2 , t_3
- recurse in regions

Theorem [Dujmović et al.]:

Planar graph G subgraph of $P \boxtimes H \boxtimes K_3$ where H is a planar 3-tree

 $qn(G) \leq 3 \cdot 3 \cdot qn(H) + 4 \leq 49$

 $(qn(H) \leq 5)$

BFS-layering

- vertex partition in tripods
- outerface bounded by t_1 , t_2 , t_3
- t attached to t_1 , t_2 , t_3
- recurse in regions
- t_1 , t_2 , t_3 parents of t

Theorem [Dujmović et al.]:

Planar graph *G* subgraph of $P \boxtimes H \boxtimes K_3$ where *H* is a planar 3-tree

 $qn(G) \leq 3 \cdot 3 \cdot qn(H) + 4 \leq 49$

 $(qn(H) \leq 5)$

BFS-layering

subgraph of $P \boxtimes K_3$

Tripod decomposition

- vertex partition in tripods
- outerface bounded by t_1 , t_2 , t_3
- t attached to t_1 , t_2 , t_3
- recurse in regions
- t_1 , t_2 , t_3 parents of t

Graph H

Theorem [Dujmović et al.]:

Planar graph G subgraph of $P \boxtimes H \boxtimes K_3$ where H is a planar 3-tree

 $qn(G) \leq 3 \cdot 3 \cdot qn(H) + 4 \leq 49$

 $(qn(H) \leq 5)$

Tripod decomposition

- vertex partition in tripods
- outerface bounded by t_1 , t_2 , t_3
- t attached to t_1 , t_2 , t_3
- recurse in regions
- t_1 , t_2 , t_3 parents of t

Graph H

• vertex *v*_t corresponds to tripod *t*

Theorem [Dujmović et al.]:

Planar graph G subgraph of $P \boxtimes H \boxtimes K_3$ where H is a planar 3-tree

 $qn(G) \leq 3 \cdot 3 \cdot qn(H) + 4 \leq 49$

 $(qn(H) \leq 5)$

Tripod decomposition

- vertex partition in tripods
- outerface bounded by t_1 , t_2 , t_3
- t attached to t_1 , t_2 , t_3
- recurse in regions
- t_1 , t_2 , t_3 parents of t

Graph H

- vertex *v*_t corresponds to tripod *t*
- v_t adjacent with v_{t_1} , v_{t_2} , v_{t_3}

Theorem^[1]:

A planar 3-tree *H* has $qn(H) \leq 5$

[1] Alam, Bekos, Gronemann, Kaufmann, Pupyrev: *Queue layouts of planar 3-trees* (2020)

Theorem^[1]:

A planar 3-tree *H* has $qn(H) \leq 5$

[1] Alam, Bekos, Gronemann, Kaufmann, Pupyrev: *Queue layouts of planar 3-trees* (2020)

Theorem^[1]:

A planar 3-tree *H* has $qn(H) \leq 5$

• maximal planar 3-tree

[1] Alam, Bekos, Gronemann, Kaufmann, Pupyrev: *Queue layouts of planar 3-trees* (2020)

Theorem^[1]:

A planar 3-tree *H* has $qn(H) \leq 5$

- maximal planar 3-tree
- leveling of vertices

[1] Alam, Bekos, Gronemann, Kaufmann, Pupyrev: *Queue layouts of planar 3-trees* (2020)

Theorem^[1]:

A planar 3-tree *H* has $qn(H) \leq 5$

- maximal planar 3-tree
- leveling of vertices
- level-0 graph is triangle

Michael A. Bekos, Martin Gronemann, Chrysanthi N. Raftopoulou

Theorem^[1]:

A planar 3-tree *H* has $qn(H) \leq 5$

- maximal planar 3-tree
- leveling of vertices
- level-0 graph is triangle
- level 1 is outerplanar

Michael A. Bekos, Martin Gronemann, Chrysanthi N. Raftopoulou

Theorem^[1]:

A planar 3-tree *H* has $qn(H) \leq 5$

- maximal planar 3-tree
- leveling of vertices
- level-0 graph is triangle
- level 1 is outerplanar

Theorem^[1]:

A planar 3-tree *H* has $qn(H) \leq 5$

- maximal planar 3-tree
- leveling of vertices
- level-0 graph is triangle
- level 1 is outerplanar
- 3 queues for binding edges

2-queue layout of outerplanar

[1] Alam, Bekos, Gronemann, Kaufmann, Pupyrev: *Queue layouts of planar 3-trees* (2020)

Theorem^[1]:

A planar 3-tree *H* has $qn(H) \leq 5$

- maximal planar 3-tree
- leveling of vertices
- level-0 graph is triangle
- level 1 is outerplanar
- 3 queues for binding edges
- recurse in faces

Queue layouts of planar 3-trees (2020)

Theorem^[1]:

Outerplanar graph G has qn(G) = 2

[1] Dujmović, Pór, Wood: Track layouts of graphs (2004)

Theorem^[1]:

Outerplanar graph G has qn(G) = 2

[1] Dujmović, Pór, Wood: Track layouts of graphs (2004)

Theorem^[1]:

Outerplanar graph G has qn(G) = 2

maximal outerplanar

[1] Dujmović, Pór, Wood: Track layouts of graphs (2004)

Theorem^[1]:

Outerplanar graph G has qn(G) = 2

- maximal outerplanar
- vertices placed on levels

[1] Dujmović, Pór, Wood: Track layouts of graphs (2004)

Theorem^[1]:

Outerplanar graph G has qn(G) = 2

- maximal outerplanar
- vertices placed on levels
- start with an edge

[1] Dujmović, Pór, Wood: Track layouts of graphs (2004)
Theorem^[1]:

Outerplanar graph G has qn(G) = 2

- maximal outerplanar
- vertices placed on levels
- start with an edge
- add degree-2 vertex
- edges have span 1 or 2

Theorem^[1]:

Outerplanar graph G has qn(G) = 2

- maximal outerplanar
- vertices placed on levels
- start with an edge
- add degree-2 vertex
- edges have span 1 or 2

Theorem^[1]:

Outerplanar graph G has qn(G) = 2

- maximal outerplanar
- vertices placed on levels
- start with an edge
- add degree-2 vertex
- edges have span 1 or 2

Theorem^[1]:

Outerplanar graph G has qn(G) = 2

- maximal outerplanar
- vertices placed on levels
- start with an edge
- add degree-2 vertex
- edges have span 1 or 2

Theorem^[1]:

Outerplanar graph G has qn(G) = 2

- maximal outerplanar
- vertices placed on levels
- start with an edge
- add degree-2 vertex
- edges have span 1 or 2

Theorem^[1]:

Outerplanar graph G has qn(G) = 2

- maximal outerplanar
- vertices placed on levels
- start with an edge
- add degree-2 vertex
- edges have span 1 or 2
- face has a top, middle and bottom vertex

Theorem^[1]:

Outerplanar graph G has qn(G) = 2

- maximal outerplanar
- vertices placed on levels
- start with an edge
- add degree-2 vertex
- edges have span 1 or 2
- face has a top, middle and bottom vertex

2-queue layout

- span 1 edges on one queue
- span 2 edges on one queue

[1] Dujmović, Pór, Wood: Track layouts of graphs (2004)

Theorem^[1]:

Outerplanar graph G has qn(G) = 2

- maximal outerplanar
- vertices placed on levels
- start with an edge
- add degree-2 vertex
- edges have span 1 or 2
- face has a top, middle and bottom vertex

2-queue layout

- span 1 edges on one queue
- span 2 edges on one queue
- faces are ordered

[1] Dujmović, Pór, Wood: Track layouts of graphs (2004)

Theorem [Dujmović et al.]:

$qn(G) \leq 3 \cdot 3 \cdot qn(H) + 4 \leq 49$

• 5-queue layout of *H* determines the order of the tripods

- 5-queue layout of *H* determines the order of the tripods
- BFS-leveling of *G* is a partial order

- 5-queue layout of *H* determines the order of the tripods
- BFS-leveling of *G* is a partial order
- each 3 vertices of the same tripod and on same BFS-level are unordered

Main Idea:

order the paths of each tripod

Main Idea:

order the paths of each tripod

Main Idea:

order the paths of each tripod

• level edges on one queue (level edges of $P_k \boxtimes K_3$)

Main Idea:

order the paths of each tripod

• level edges on one queue (level edges of $P_k \boxtimes K_3$)

Claim

Main Idea:

order the paths of each tripod

• level edges on one queue (level edges of $P_k \boxtimes K_3$)

Claim

Main Idea:

order the paths of each tripod

• level edges on one queue (level edges of $P_k \boxtimes K_3$)

Claim

Main Idea:

order the paths of each tripod

• level edges on one queue (level edges of $P_k \boxtimes K_3$)

Tripods need 3 queues upper bound reduced to 48

On the Queue Number Of Planar Graphs Michael A. Bekos, Martin Gronemann, Chrysanthi N. Raftopoulou

Claim

Goal:

order the paths of each tripod to avoid 3-rainbows

Goal:

order the paths of each tripod to avoid 3-rainbows

• focus on level edges on single level

Goal:

order the paths of each tripod to avoid 3-rainbows

- focus on level edges on single level
- a 3-rainbow contains 3 vertices of the same tripod

Goal:

order the paths of each tripod to avoid 3-rainbows

- focus on level edges on single level
- a 3-rainbow contains 3 vertices of the same tripod

Goal:

order the paths of each tripod to avoid 3-rainbows

- focus on level edges on single level
- a 3-rainbow contains 3 vertices of the same tripod

Goal:

order the paths of each tripod to avoid 3-rainbows

- focus on level edges on single level
- a 3-rainbow contains 3 vertices of the same tripod

Goal:

order the paths of each tripod to avoid 3-rainbows

- focus on level edges on single level
- a 3-rainbow contains 3 vertices of the same tripod

Goal:

order the paths of each tripod to avoid 3-rainbows

- focus on level edges on single level
- a 3-rainbow contains 3 vertices of the same tripod

Types of 3-rainbows

• for two adjacent tripods one is parent of the other

- for two adjacent tripods one is parent of the other
- if t' parent of t, t is not adjacent to a path p' of t'

- for two adjacent tripods one is parent of the other
- if t' parent of t, t is not adjacent to a path p' of t'

- for two adjacent tripods one is parent of the other
- if t' parent of t, t is not adjacent to a path p' of t'
- Ieft and right might conflict

- for two adjacent tripods one is parent of the other
- if t' parent of t, t is not adjacent to a path p' of t'
- Ieft and right might conflict

\rightarrow consider only following tripods

- for two adjacent tripods one is parent of the other
- if t' parent of t, t is not adjacent to a path p' of t'
- Ieft and right might conflict

ightarrow consider only following tripods

avoid one of the two edges

- for two adjacent tripods one is parent of the other
- if t' parent of t, t is not adjacent to a path p' of t'
- Ieft and right might conflict

\rightarrow consider only following tripods

- for two adjacent tripods one is parent of the other
- if t' parent of t, t is not adjacent to a path p' of t'
- Ieft and right might conflict

\rightarrow consider only following tripods

- children are grouped based on which paths they don't see
- following tripods form a series of groups

- for two adjacent tripods one is parent of the other
- if t' parent of t, t is not adjacent to a path p' of t'
- Ieft and right might conflict

ightarrow consider only following tripods

- children are grouped based on which paths they don't see
- following tripods form a series of groups

ightarrow require two groups

Restrictions

- 1. Consider only following tripods
- 2. Split considered nodes into two groups
- 3. Consider only children

Restrictions

- 1. Consider only following tripods
- 2. Split considered nodes into two groups
- 3. Consider only children

Restrictions

- 1. Consider only following tripods
- 2. Split considered nodes into two groups
- 3. Consider only children

- blue vertices precede and green follow
- exclude queues of the outerplanar subgraph
- other queues satisfy 1.

Restrictions

- 1. Consider only following tripods
- 2. Split considered nodes into two groups
- 3. Consider only children

- blue vertices precede and green follow
- exclude queues of the outerplanar subgraph
- other queues satisfy 1.
- green neighbors form two clusters

Restrictions

- 1. Consider only following tripods
- 2. Split considered nodes into two groups
- 3. Consider only children

- blue vertices precede and green follow
- exclude queues of the outerplanar subgraph
- other queues satisfy 1.
- green neighbors form two clusters
- do the same for the blue

Restrictions

- 1. Consider only following tripods
- 2. Split considered nodes into two groups
- 3. Consider only children

- blue vertices precede and green follow
- exclude queues of the outerplanar subgraph
- other queues satisfy 1.
- green neighbors form two clusters
- do the same for the blue

we can improve on two queues of the 5-queue layout of *H*

Restrictions

- 1. Consider only following tripods
- 2. Split considered nodes into two groups
- 3. Consider only children

Restrictions

- 1. Consider only following tripods
- 2. Split considered nodes into two groups
- 3. Consider only children
 - green and blue clusters to be children
 - each cluster to form a group,
 - i.e. to not see a path of the tripod

Restrictions

- 1. Consider only following tripods
- 2. Split considered nodes into two groups
- 3. Consider only children
 - green and blue clusters to be children
 - each cluster to form a group,
 - i.e. to not see a path of the tripod

- each cluster to be in a shaded region
- graph *H* must reflect planarity of *G*
- graph H must respect parent-child relation
- the level of parent can't be greater than the child's

- Contract tripods in G
 - preserve embedding
 - remove homotopic parallel edges

- Contract tripods in G
 - preserve embedding
 - remove homotopic parallel edges

- Contract tripods in G
 - preserve embedding
 - remove homotopic parallel edges

- Contract tripods in G
 - preserve embedding
 - remove homotopic parallel edges

- Contract tripods in G
 - preserve embedding
 - remove homotopic parallel edges

- Contract tripods in G
 - preserve embedding
 - remove homotopic parallel edges

- Contract tripods in G
 - preserve embedding
 - remove homotopic parallel edges

- Contract tripods in G
 - preserve embedding
 - remove homotopic parallel edges

- Contract tripods in G
 - preserve embedding
 - remove homotopic parallel edges

- Contract tripods in G
 - preserve embedding
 - remove homotopic parallel edges

- Contract tripods in G
 - preserve embedding
 - remove homotopic parallel edges
- Subdivide parallel edges and loops

- Contract tripods in G
 - preserve embedding
 - remove homotopic parallel edges
- Subdivide parallel edges and loops
- Extend by preserving embedding

- All three restrictions are satisfied
- The paths can be ordered with no 3-rainbows

Improved bound:

$qn(G) \leq 3 \cdot (3 \cdot 3 + 2 \cdot 2) + 3 = 42$

- Further reduce
- Subfamilies

- Further reduce
- Subfamilies